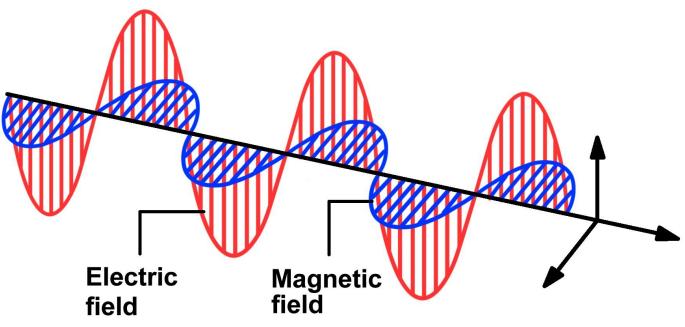
Technician Licensing Class Introduction Wes Hardaker wes@ws6z.com http://www.ws6z.com/

Special thanks to K3DIO The Plano Amateur Radio Klub (TX) Some of this material comes from them

Radio Waves


- Electromagnetic Waves
- Frequency
- Polarization
- Antennas
- Feedlines
- Standing Wave Ratios

Electromagnetic (EM) Waves

- Types
 - Light
 - Radio Waves
 - X-Rays
 - etc
- Speed
 - Light is a type of radio wave
 - Radio waves travel at the speed of light
 - True speed of light in "free space"
 - Slower through materials, including air
 - Radio waves are waves greater than 20 kHz

Electromagnetic (EM) Waves

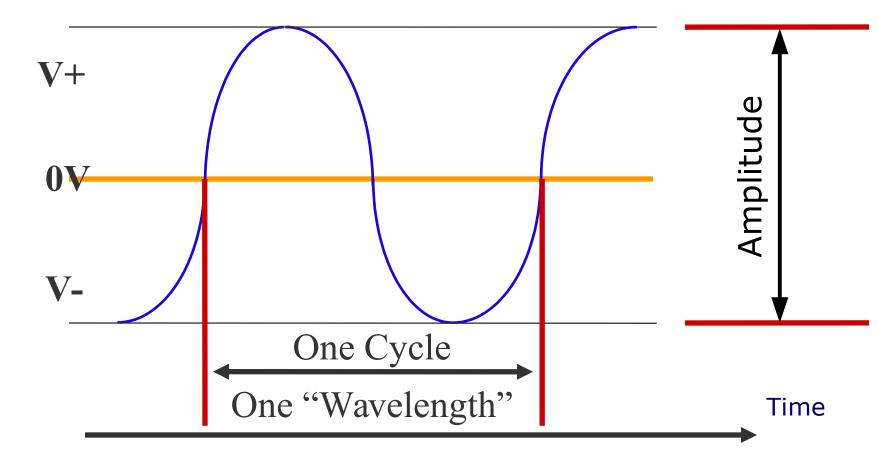
- Contain two elements
 - At Right angles from each other
 - An electric component
 - A magnetic component

Radio Waves vs Water

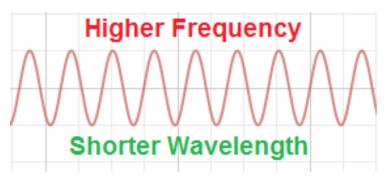
- Water waves and ripples
 - Ripple out from the center
 - Loose energy as they travel further
 - Loose energy as they spread out
 - Travel in 2 dimensions
- Radio waves
 - Ripple out from the transmitter
 - Loose energy as they travel further
 - Loose energy as they spread out
 - Travel in 3 dimensions

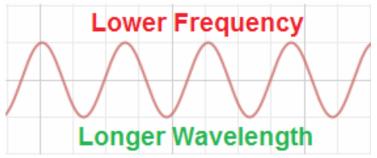
Waves

- Can vary in size ("Amplitude")
 - How tall?
- Can vary in frequency
 - How many waves pass per second?
 - Related to distance between the peaks



Bigger Waves


Wavelength and Frequency


(Diagram is only in 1 dimension!) The distance a radio wave travels in one cycle is called wavelength.

Frequency Vs Wavelength

- Frequency goes up:
 - Wavelengths get shorter
- Frequency goes down:
 - Wavelength gets longer

Radio "Wave" Properties

- Radio Frequency "RF"
- Frequency is measured in Hertz ("Hz")
 - The number of "cycles per second"
 - How many times does a peak reach you?
- Example:
 - 5 Hz = The peak gets to you 5 times in 1s
 - Or the trough, or the middle, or...
 - (some reference point)

Radio "Wave" Math

- Symbols
 - F: Frequency
 - S: Distance (It's a physics thing)
- Equations
 - F is always in MHz for these
 - (the 300,000,000 m/s is the speed of light)
 - Frequency (MHz) = 300 / wavelength (m)
 - F = 300/S
 - Wavelength (m) = 300 / frequency (MHz)
 - S = 300/F

Your Turn! F = 300 / S

- What is the frequency for:
 - 2m national calling:
 - 70cm national calling:
 - 6m calling frequency:
- What is the wavelength of:
 - 802.11 channel:
 - KXJZ FM:
 - KFBK :

5240 MHz

2.0475

0.672645 m

5.98503 m

m

- 90.9 MHz
- 1.530 MHz

Frequency Bands

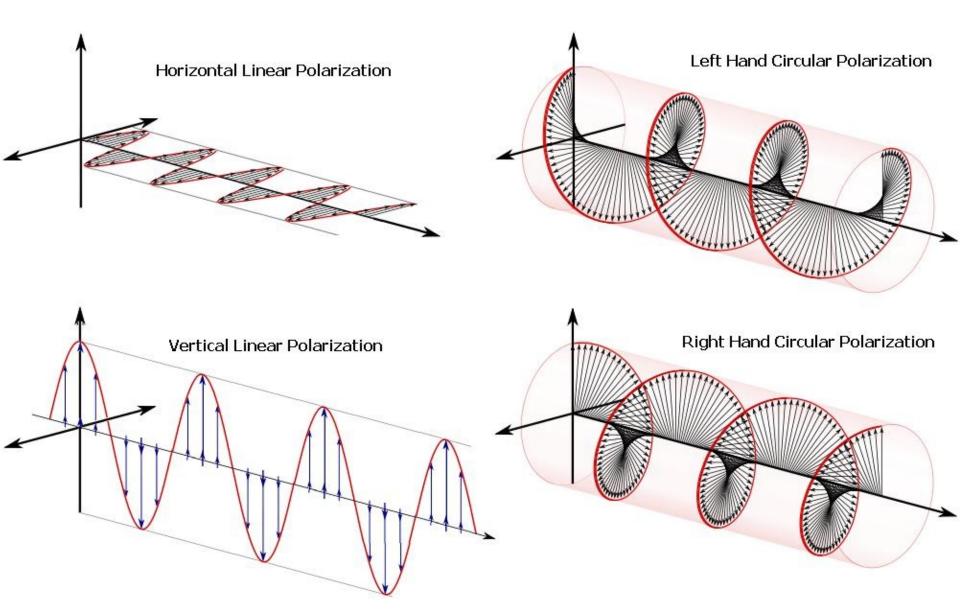
 Radio waves are groups in bands (memorize these)

- HF: 3 30 MHz
 VHF: 30 300 MHz
- UHF: 300 3000 MHz

Ham Radio Bands

- Are identified by both frequency and approximate wavelength
 - <u>2m</u> band ~<u>147 MHz</u>
 - Bottom: 144 MHz = 2.083333 m
 - Top: 148 MHz = 2.027027 m
 - <u>6m</u> band ~<u>50 MHz</u>
 - <u>160m</u> band ~<u>1.875 MHz</u>
- Note the inverse relationship!
 - One goes up, the other goes down
 - (Guess what's gonna happen to antenna sizes!)

Sound Waves


Sound Waves

- You hear air being pushed back and forth
- Atoms bump against each other
- Causes vibrations in your ear
- Guess what: the waves have a frequency
- Human hearing: 300 Hz 3000 Hz
- Electronics convert signals to sound
 - Receivers: receive radio waves, convert them to electricity
 - Speakers: convert electric to sound waves

EM Waves - Polarization

- We think primarily of the electric wave
- It is frequently "Polarized"
 - It moves up and down in one plane
- Polarization Types
 - Horizontal Side-to-side
 - Vertical
 Up-and-Down
 - Circular Rotates around

EM Waves - Polarization

Polarization Notes

Repeaters

- Almost always have vertical antennas
- Are, thus, vertically polarized
- Horizontal polarization is better:
 - For long distance VHF/UHF
 - For weak-signal and CW work
- If transceiver and receiver are opposite:
 - Signals could be significantly weaker
 - ~20db drop at VHF
 - Hold your HT antenna upright!

How do we create EM waves?

• Move electricity!

- Electromagic waves are created anytime electricity flows through something
- Move them at the frequency you want
 Think of pulsing electrons moving in and out
- Powerlines are very noisy!
- Bigger, better transmissions
 - Move electricity into an antenna
 - Wires are designed to move electricity
 - Antennas are designed to radiate EM
 - (we'll see that you can make a wire antenna)

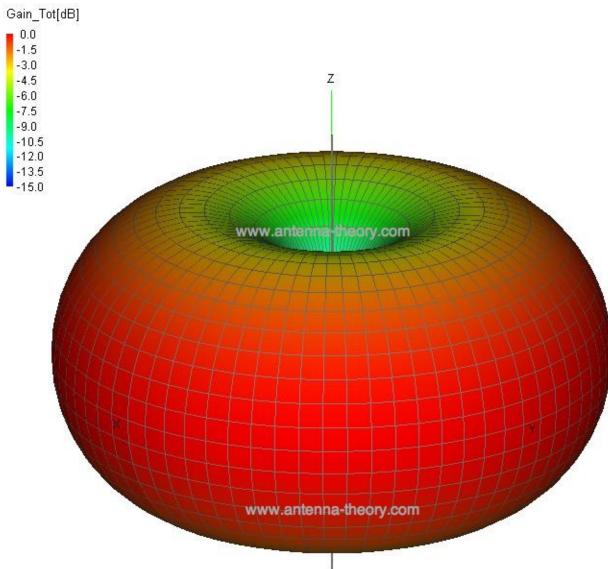
Antenna Basics

- Antenna theory is quite complex
- Usually have at least
 - One driven element where the juice goes
 - One matching ground element
 - EM radiating from an antenna needs a return path to ground
- Usually built in wavelength fractions
 - 1/2-wave dipole
 - 1/4-wave vertical
 - Frequency goes up: antennas get short

Simple Antenna Math

- Recall: S(m) = 300 / F(MHz)
- 1/2 wave dipole length for 146.520?
 - S = 300 / 146.520 / 2: 1.0238m
- The U.S. books frequently use inches
 - 1m ~ 39.37 inches
 - 1.0238m = 40.3in
- Rewriting for inches
 - S(m) = 39.37 * S(in) = 300 / F(MHz)
 - S(in) = 11811 / F(MHz)

Antenna Math Test Questions


Equations

- S(m) = 300 / F(MHz)
- S(in) = 11811 / F(MHz)
- 1m = 39.37in
- What is the approximate length, in inches, of a quarter-wavelength vertical antenna for 146 MHz?
- What is the approximate length, in inches, of a 6 meter 1/2-wavelength wire dipole antenna?

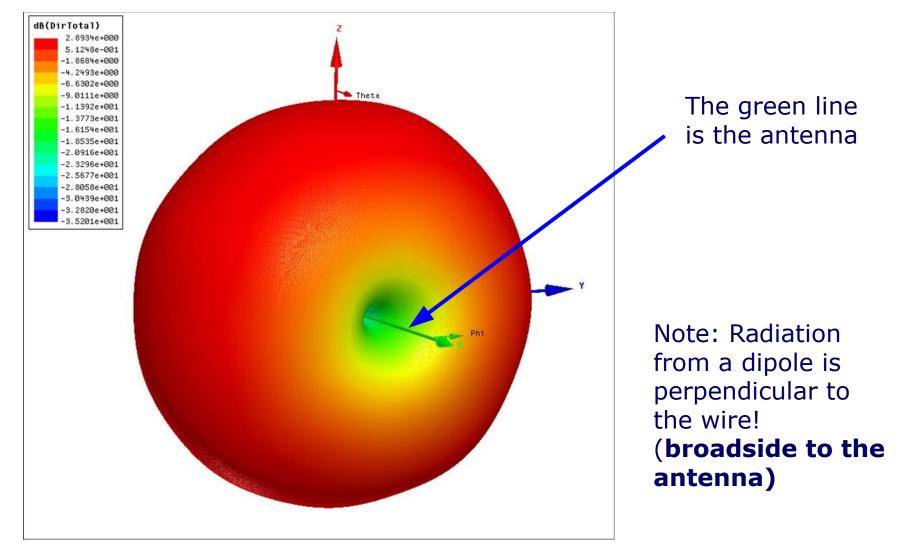
Antenna Radiation Patterns

- A perfect reference antenna
 - Would radiate in a perfect sphere
 - Strength in each direction would be equal
- Real antennas
 - Are never perfect in the first place
 - Are usually designed to radiate stronger
 - Stronger signals in some directions
 - Which means weaker in opposite directions
 - The net result must be the same!
- Gain: increase in signal strength in a direction compared to a reference

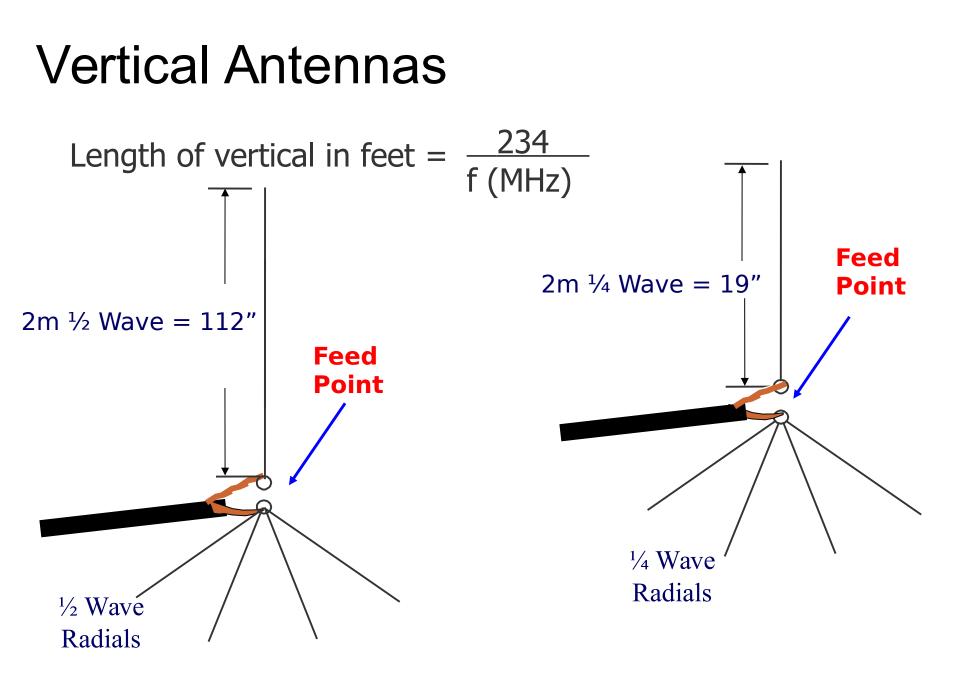
Vertical Antenna Pattern

The Simplest Antenna: the Dipole

- "half-wave" dipole antennas
 - Two wires running opposite to each other
 - At just the right length for the frequency
 - 1/4 of the transmission wavelength each


3 "Fanned" Attic Dipoles – WA6MM

160m Dipole (from W1TR)



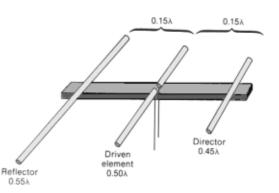
Dipole Radiation Pattern

Vertical Antennas

- Also are in multiples of 1/4-waves
 - 1/4-waves are common
 - 1/8-waves are used too
 - For 6m, 2m, 440, etc
 - Longer antennas are easier
 - 5/8th wave antennas
 - 1 & 1/4 antennas

Antenna Characterstics

- Vertical antennas produce vertical polarized electric signals
 - Right angles to the earth's surface
- Hand-held's "rubber duck" antennas
 - A vertical antenna
 - They're inefficient not full sized
 - Inside a car their signal can bounce around and will be 10-20 times weaker

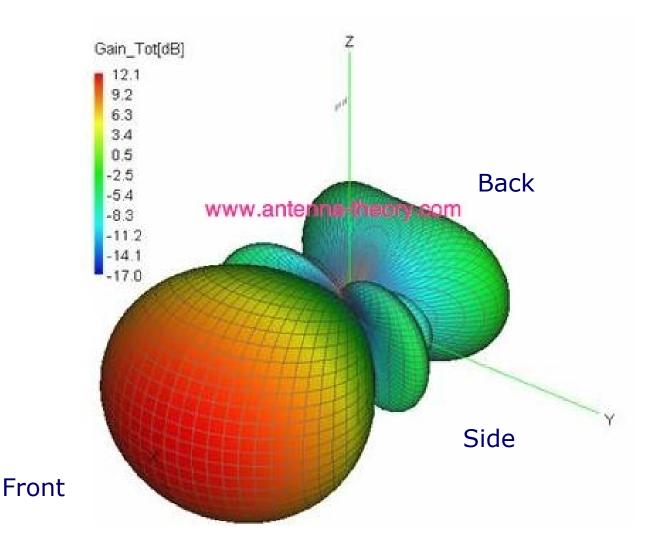

Antenna Characterstics

- Can do both horizontal and vertical:
 - Dipoles
 - Yagis
 - Quads
- (depends on how they're mounted)

Directional or "Beam" Antennas

A Cubical Quad Antenna

Quads



Yagi Antenna Pattern – Directional!

2-D Gain Models

Before 3-D models we only had:

(these are still very common diagrams)

Antenna Characteristics

- Antennas have "resistance"
 - Most HAM Transmitters expect 50 ohms
 - Resistance varies by frequency!
- Antennas have "capacitance" too
 - Most of the time, you want 0 capacitance
 - Not realistic even when desired
 - Capacitance is a form of resistance
 - Varies by frequency too!
- Antennas also have "inductance"
 - Similar to capacitance

Antenna Characteristics

Antennas

- Are designed for a particular frequency
 - They are "**resonate**" at one frequency
 - And close enough really near by
- Characteristics deviate away from it
 - Resistance goes up or down
 - So does capacitance / inductance
- You can measure an antenna's performance using an antenna analyzer

Putting Up Antennas

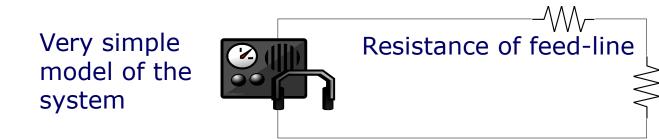
- Towers let you get them really high
 - Wear a hardhat and safety glasses
 - Wear a **climbing harness**
 - Always have a helper or observer
 - Keep them clear of overhead power
 - If it falls, ensure a **10 foot clearance**
 - A gin pole can help you lift sections
 - Never climb a crank-up tower unless it is fully retracted

Putting Up Antennas

- Grounding Towers
 - Use an 8-ft rod for each leg
 - Bond them to each other and the tower
- Grounding with conducting wires
 - Lightning likes a straight path
 - So help it: avoid sharp bends
 - Keep connections short and direct
- Grounding requirements are set by
 - Local electrical codes

Connecting Antennas

- You can attach a radio directly
 - But it's not always convenient for you
 - You want your antenna as high as possible
 - Like, in a tree
 - Maximum "Radio Horizon"
- A "Feedline" connects them
 - Transfers RF signals between radio and an antenna
 - Common Types
 - Coaxial cable ("Coax")
 - Ladder Line


Feedline Characteristics

- Feedlines have
 - Resistance
 - capacitance and inductance too
- Needs to carefully match the antenna
 - i.e. You generally want 50ohm coax
 - Your radio will not be happy otherwise

Antenna

Resistance

• (more on this later)

Feedline Characteristics

- Feedlines have different qualities
 - RG58 : Thin, lightweight, and horrible
 - RG8: Thick, heavy, and great
 - Hard-line: Super duper thick and great

Worse feedlines

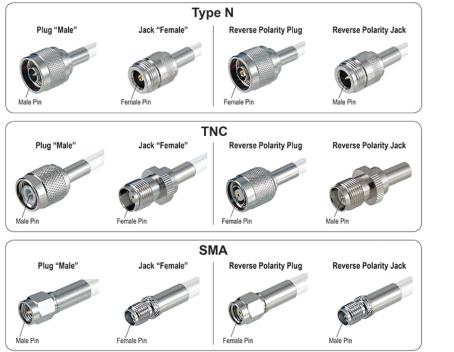
- Lose more power in transmission
- Lost power is converted into heat
- Higher frequency → more loss
 - Make sure your high-frequency antennas have really good feedlines.
 - Optimize for 2m before 160m

Coax Cables

- Are super easy to use
- Very susceptible to water damage
 - Most common reason for failure
 - "air core" especially
 - Use UV-resistant outer-jacket cables to protect the jackets against damage

OUTSIDE INSULATION

- More sensitive to a mismatch with the antenna
- Loss per foot measured in dB


Coax Cable Signal Loss (Attenuation) in dB per 100ft

Loss	RG-174	RG-58	RG-8X	RG-213	RG-6	RG-11	9913	LMR-400
1MHz	1.9dB	0.4dB	0.5dB	0.2dB	0.2dB	0.2dB	0.2dB	0.3dB
10MHz	3.3dB	1.4dB	1.0dB	0.6dB	0.6dB	0.4dB	0.4dB	0.5dB
50MHz	6.6dB	3.3dB	2.5dB	1.6dB	1.4dB	1.0dB	0.9dB	0.9dB
100MHz	8.9dB	4.9dB	3.6dB	2.2dB	2.0dB	1.6dB	1.4dB	1.4dB
200MHz	11.9dB	7.3dB	5.4dB	3.3dB	2.8dB	2.3dB	1.8dB	1.8dB
400MHz	17.3dB	11.2dB	7.9dB	4.8dB	4.3dB	3.5dB	2.6dB	2.6dB
700MHz	26.0dB	16.9dB	11.0dB	6.6dB	5.6dB	4.7dB	3.6dB	3.5dB
900MHz	27.9dB	20.1dB	12.6dB	7.7dB	6.0dB	5.4dB	4.2dB	3.9dB
1GHz	32.0dB	21.5dB	13.5dB	8.3dB	6.1dB	5.6dB	4.5dB	4.1dB
Imped	50ohm	50ohm	50ohm	50ohm	75ohm	75ohm	50ohm	50ohm

Connectors

Type N: high frequencies (greater than 400MHz) PL-259: A bayonet type: for HF

Common RF Coax Connectors - A Visual Guide

SO-239 to PL259

BNC

Mismatches

- What happens when they match?
 - All the power goes out the antenna!
 - Yay!
- What happens when they don't?
 - Not all the power goes out the antenna
 - Some is "Transmitted"
 - Some is "Reflected" back down the line
 - So, if your transmits at 5 Watts

Only 4 watts may actually go out

Use a SWR meter or **Directional Wattmeter**

Standing Wave Ratio

The least understood aspect of antenna theory

The Standing Wave Ratio

- how well a load is matched to a transmission line
- i.e., A ratio of "real" to "perfect"
- "one to one" \rightarrow 1:1
- A 1:1 ratio is a perfect situation
 - Impossible!
 - At anything other than 1:1
 - There is an "impedance mismatch"
 - you loose power

At 2:1 → transmitters reduce power

• The test says 2:1, but I've seen more at 3:1

Measuring SWR

- Use a:
 - SWR meter
 - Many high-end radios have them built-in now
 - Automatic antenna tuners do too

Use a directional watt meter

Measures forward and reverse power

Fixing SWR Issues

- Fix the antenna!
 - Antennas themselves cause issues
 - Getting an exact 50 ohm antenna is hard
- Fix the feedline!
 - Use the right one!
 - Very important at high frequencies
- Fix the connector!
 - If you're getting erratic readings, it's probably a loose fitting.

Fixing SWR Issues

- Use an antenna tuner
 - Adds capacitors and inductors
 - Matches the systems impedance to the transmitters expected impedance
 - Does not fix the inefficiencies!
 - Just prevents the radio from seeing them
 - Sits as close to the antenna as possible
 - But, most put them right next to the radio
 - (hard to control one at 50ft in the air)

A very big antenna tuner – WB2ICQ

Radio Frequency Radiation

- RF radiation safety is affected by:
 - Power level of the transmitter
 - The frequency of the transmission
 - Human absorption differs by frequency
 - Time exposed to the signal
 - "Duty Cycle": Ratio of on-air time to total operating time
 - An "average exposure" level over time
 - Listening 99% of the time doesn't do much
 - Radiation pattern of the antenna
 - (don't stand in front of a beam antenna)

RF Radiation Guideline

• Generally:

- Minimize: Power * Time * 1/Distance
- i.e.
 - Reduce power when not needed
 - Reduce transmission time
 - Move away from the antenna
 - Falls off at the distance squared
 - *i.e.* 2x farther away is 4x less radiation
- As a ham, you can separate the radio from the antenna: which is safer!

RF Radiation

Dangers

- Don't touch antennas while transmitting
 Painful RF burn
- FCC Compliance
 - Re-evaluate after an **equipment change**
 - Acceptable evaluation criteria:
 - FCC OET Bulletin 65
 - Computer modeling
 - Measurement of field strength using calibrated equipmenth
 - ("all of the above" on the test)

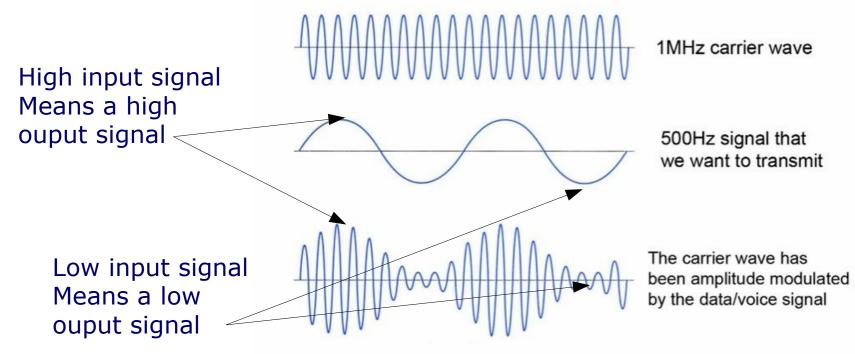
VHF / UHF RF Radiation


- VHF/UHF radiation is non-ionizing
- Maximum VHF RF before evaluation
 - 50 watts PEP at the antenna
 - Many radios don't go higher than that
 - Except for some radios at 6m
- On the test, lowest Maximum Permissible Exposure limit:
 - 3.5 MHz, **50 MHz**, 440 MHz, 1296 MHz
- Longer story
 - http://www.arrl.org/the-fcc-s-new-rf-exposure-regulations

We know how to broadcast... now what?

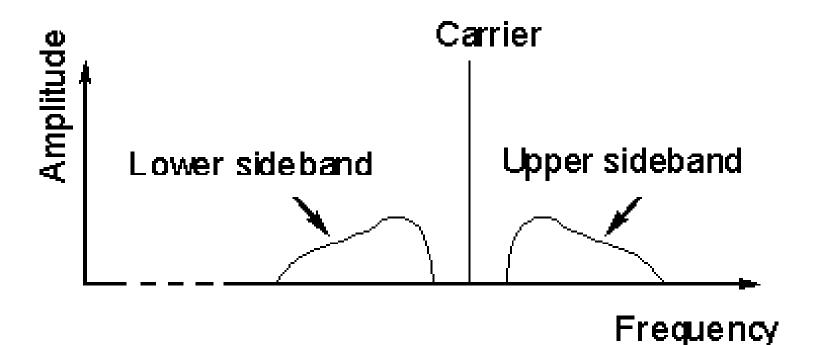
- What types of signals can we send?
- How do they work?

The simplest: A "Carrier Wave" (CW)


- A sinusoidal signal being turned on/off
 - Used to send Morse Code
 - Pushing a button down sends it
 - And letting go of the button stops it

Amplitude Modulation (AM)

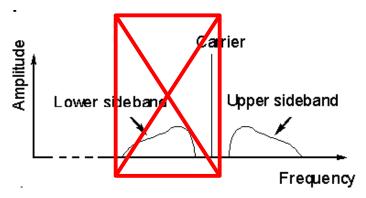
Start with a sine wave (carrier wave)


- At the frequency we want to transmit at
- Make the amplitude of it vary
- An input signal determines the height

Amplitude Modulation

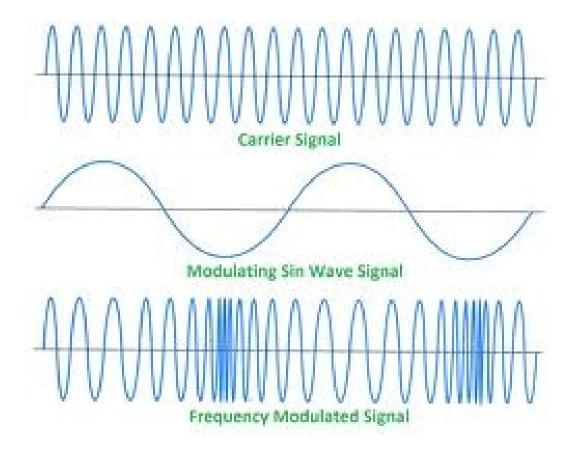
In the frequency spectrum it looks like

- A carrier in the middle
- And an upper/lower bump, aka "sideband"

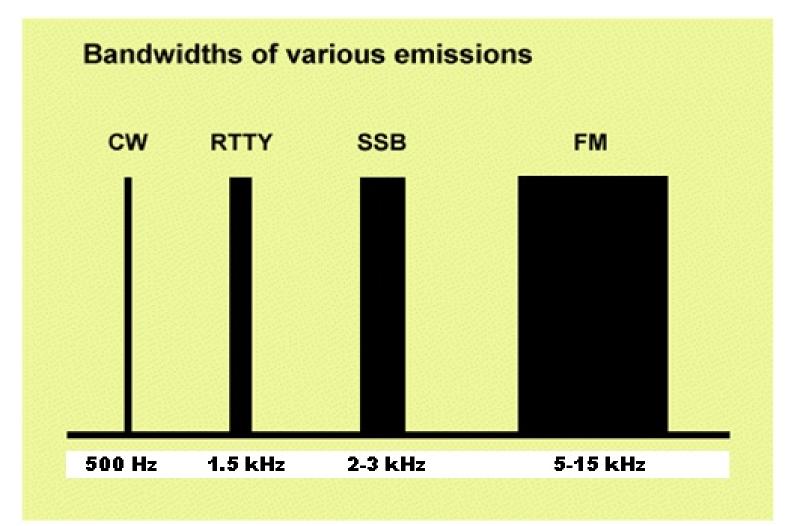


Single Sideband

- Hams got creative.
 - Transmitting the carrier is a waste of power
 - In fact, transmitting both sidebands is too
- The solution: filter them out!
 - Significantly less power to transmit
 - Receiver can still reconstruct the signal
 - Still a form of

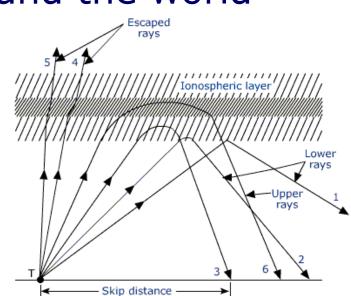

Amplitude Modulation

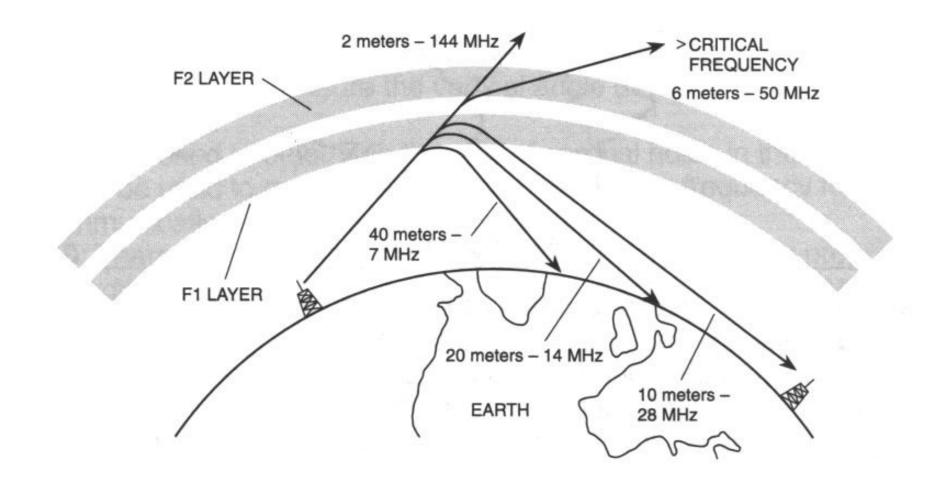
- USB on 20m 440
- LSB on 40m 160m



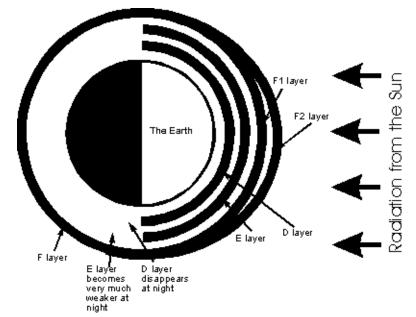
Frequency Modulation

- Modulate the Frequency instead
 - Change it slightly as the input varies


Frequency Space Required


• How do signals get around the world?

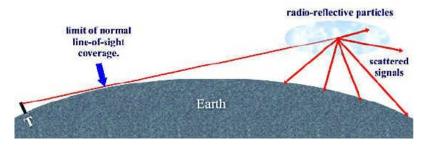
- Various ways!
- First, we have to talk about the sky
 - Actually the ionosphere
 - Allows radio signals around the world



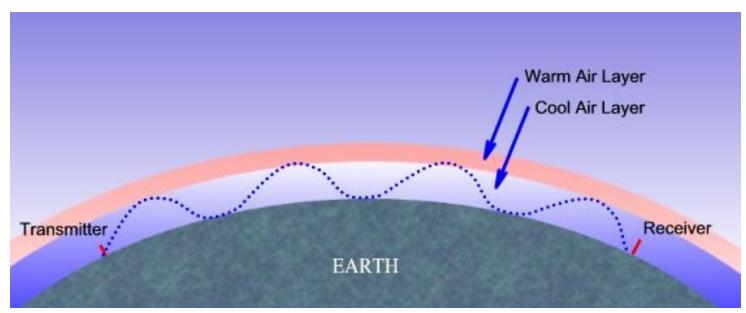
Reflection at different frequencies

lonosphere

- Composed of Layers
 - Some exist in the day (F)
 - Some exist only at night (D and E)
- 10m works best during the day
- Signals bounce off it
 - Reflected polarization is randomized



- How do signals get around the world?
 - Various ways!
- UHF and VHF
 - Not normally heard over long distances
 - Sometimes through "sporadic E" reflection


Sometimes they bounce off of aurora
 rapid fluctuations of strength and distort

- VHF and UHF sometimes over 300mi!
 - "Tropospheric scatter"
 - Radio waves scatter in the troposphere

- Sometimes bouncing off comets
 - "meteor scatter"
 - Best on 6m

- VHF and UHF continued still
 - Tropospheric Ducting: Temperature inversions in the atmosphere

Satellites

- There are "AMSAT" satellites in orbit
 - Frequently carry 2m or 400 repeaters
 - LEO: Low Earth Orbit
- Satellites move very very fast
 - Results in **doppler shift** in frequency
 - Higher as it comes at you
 - Lower as it goes away
 - You have to adjust your transmitter!
- Satellites rotate
 - "Spin Fading" their antennas rotate

Questions?

?